skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lazaro, Orlando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower ( α) and Peltier ( Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π =  αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi 2 Te 3 TE generator. By measuring α and Π independently on the same device, the ratio ( Π/ α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy. 
    more » « less